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Challenges of installed exhaust noise

•  Prediction
–  Complex geometries, tightly 

integrated propulsion make 
complex grids

–  Distributed noise sources hard to 
propagate

–  Multiple-stream nozzles create 
large parameter space

•  Model-scale Experiments
–  Large planforms to fit in facilities
–  Scale factors push frequencies
–  Jet flow supply bigger than engines

Doty, M.J., et al. "Jet Noise Shielding Provided by a Hybrid Wing Body Aircraft", AIAA 2014-2625 (2014).  
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Aeroacoustic Facility Capability/Limitations

•  Nozzle Acoustic Test Rig (NATR) in Aero-Acoustic Propulsion Lab at NASA Glenn
•  Three independent air streams for nozzle models, large far-field
•  53” (1.35m) Ø freejet flight stream
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Simulating propulsion-airframe in NATR

•  Aircraft positioned relative to microphones in ceiling
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Simulating propulsion-airframe in NATR

•  Aircraft superimposed on jet rig for outboard engine, matching nozzle size
•  Note how much larger jet rig is than nacelle
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Fitting planform inside freejet flight stream

•  Can’t put whole plane in! 
•  Avoid crossing freejet shear layer. 
•  How much vehicle planform required?
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Objective 1: How much planform required for 
aeroacoustic testing of installed exhause noise?

•  Trim aircraft planform to fit within freejet.
•  Neglect curvatures outside of pylon contours in immediate contact with flow.
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Objective 1: How much planform required for 
aeroacoustic testing of installed exhause noise?

•  Result: minimal aircraft planform 
–  Captures reflection of jet plume noise sources.
–  Provides accurate trailing edge to interact with turbulent plume.
–  Minimizes support hardware that may cause parasitic noise, reflection.

Objective 1 of current test was to determine size requirements for flight stream tests 
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Objective 2: Extending previous jet-surface interaction 
(JSI) database to realistic exhaust systems

•  Initial JSI database created for simple, single-stream nozzle with semi-infinite 
flat surface without flight

•  Modeling of acoustic impact due to shielding completed for initial JSI database1.
•  Extend JSI database by including

–  Plug nozzles
–  Dual-stream nozzles
–  Finite span of surface
–  Pylon features
–  Flight stream Initial JSI configuration with simple single-

stream nozzle 

1Brown, C., "Empirical Models for the Shielding and Reflection of Jet Mixing Noise by a Surface", AIAA 2015-3128 
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Progression of nozzle complexity

•  Extending JSI from simple, single-stream jets to practical exhaust systems:

Simple, single-stream 

External plug, single-stream 

External plug, multi-stream 
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Flow matrices tested

•  Single-stream on plugged nozzle to 
relate to simple, single-stream 
cases

–  Unheated, 0.5 < M < 1.4
–  Use both core stream or both to vary 

jet diameter
–  Equivalent diameters 

3.7”-6.9” (93-172mm)

•  Dual-stream flows on plugged 
nozzles (C1, C3)

–  Vary area ratio (1.0:1, 2.5:1)
–  Vary bypass ratio
–  Fixed temperature ratios
–  Equivalent diameters 

5.2”-6.9” (132-172mm)

 

Table 1 Matrix of setpoints for conventional dual-
stream flows on nozzles C1 and C3. 
Setpoint NPRc NTRc NPRb NTRb 

1312 1.3 3 1.22 1.25 
1316 1.3 3 1.58 1.25 
1518 1.5 3 1.8 1.25 
1813 1.8 3 1.25 1.25 
1815 1.8 3 1.5 1.25 
1818 1.8 3 1.8 1.25 
2116 2.1 3 1.6 1.25 
2120 2.1 3 2.0 1.25 
2323 2.3 3 2.3 1.25 

 

Table 1 Definitions of single-stream setpoints on 
the C1 nozzle. NPRb matches NPRc when outer 
stream is active. 
Setpoint NPRc NTRc NPRb Ma M 

300 1.200 1 1 0.50 0.52 
330 1.200 1 1.200 0.50 0.52 
500 1.435 1 1 0.70 0.74 
550 1.435 1 1.435 0.70 0.74 
700 1.856 1 1 0.90 0.98 
770 1.856 1 1.856 0.90 0.98 
9010 3.183 1 1 1.19 1.40 

2
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Surface parametric variations tested—flat surface

•  Vary standoff hE and length xE as before.
•  Standoff and length measured from first nozzle lip.

xE

hE

hE = 0” hE = 8.5” (215mm) 

xE = 0” xE = 42” (1067mm) 
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Complex planforms: Simulated LM1044 aircraft

•  Planforms created for center engine and outboard engine configurations.
•  Static test—no flight stream. No compromises on size.
•  Scale factor ~9:1
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Problem: Rig-Planform Integration

•  Issue with fitting surface around rig
–  Irregular mating surface
–  Real problem with variable standoff

•  With flight this creates a juncture flow 
problem

–  Rig bigger diameter than nacelle
–  Critical (nonrepresentative) because 

leaves low-velocity deficit near 
nozzle.

•  Need to cover some region upstream 
of nozzle lip

–  Represent fore of aircraft planform
–  Diffraction of sound at upstream 

edge of surface?
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Solution: Biplane

•  Add surface above rig, parallel to planform 
•  Extends acoustic shielding forward
•  Simple, no interference with rig
•  Design questions:

–  How big?
–  How much overlap with main surface?
–  What jet conditions needed?

•  Several biplane geometries tried
•  Phased array used to find leakage

Long (1.2m) biplane surface, no overlap Short (0.5m) biplane surface, max overlap (190mm)  

Biplane 
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Far-field acoustic microphones and phased array

•  24-microphone polar array at ~15m 
radius 

–  45°—160° @ 5° increments
–  ~70 jet diameter distance
–  120Hz – 80kHz

•  48-element phased array (OptiNav) 
–  Not at the same time as far-field!
–  Nearly the same plane as far-field
–  ~2m distance, 90° polar angle
–  200Hz – 32kHz
–  Conventional and Functional 

beamforming algorithms
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Impact of Biplane Geometry—Biplane Overlap

•  Spectral directivity of far-field sound, colored by difference (in dB) in sound 
between long biplanes with and without overlap (overlap minus no overlap), 
at maximum standoff.

•  Subsonic jet shows no difference with overlap.
•  Supersonic (shock-containing) jet has significant differences in screech and 

broadband shock noise with biplane overlap.
M=0.98, unheated  M = 1.4, unheated  
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Effect of biplane on subsonic jet noise

•  Spectral directivity of far-field sound, colored by difference (in dB) in sound 
between long biplane with max overlap and no biplane 

–  Difference is only significant at polar angles < 55°
•  Source map at frequency of maximum difference (3.3kHz) suggests noise 

reflecting off surface supports to be the source of discrepancy 
–  Not edge diffraction! 

•  Acquired JSI database with long biplane with max overlap anyway.

M=0.98, unheated  

3.3kHz 
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Database of dual-stream nozzles

•  Examples of data acquired for dual-stream nozzle flows at various flows
•  Surface length xE/De = 2.2, standoff hE = 0. 
•  Colors indicate difference in sound, with surface minus without.
•  Trailing edge dipole (low frequency, 90°) dominant at low speeds.
•  Significant shielding at high frequencies.
•  Surprising reduction in aft angle noise; change in directivity?
•  To be used in empirical modeling1.

NPRc:             1.3 1.8 2.1 
NPRb:             1.22 1.5 2.0 

1Cliff Brown, et al. “Modeling Jet-Surface Interaction Noise for Separate Flow Nozzles” AIAA/CEAS 2016-xxxx. 
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Source distributions of dual-stream vs single-stream

•  Axial location of peak source strength (as measured by phased array) vs 
frequency.

•  Axial location normalized by calculated potential core length β, equivalent 
jet diameter De, and shifted origin x0.

•  Values of β, De, x0 that normalize flow1,2 do not collapse source distribution.

1Henderson, B.S. & Wernet, M.P., "Characterization of Three-Stream Jet Flow Fields", AIAA 2016-1636, (2016) 
2Bridges, J, "Simple Scaling Of Multi-Stream Jet Plumes For Aeroacoustic Modeling", AIAA 2016-1637, (2016).  
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Source distributions in multi-stream jets

•  Sound source maps produced by the phased array and overlaid on the array’s 
field of view for a range of frequencies. 

•  Typical of all multi-stream flows examined.
•  Sources roughly located at end of potential core over wide range of frequencies.
•  Sudden shift to nozzle at StDe = 3.
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Complex geometries, azimuthal observers

•  Source distributions for center engine configuration
•  12.5kHz modelscale (~1500Hz fullscale)
•  Source distribution predominantly at nozzle
•  Residual sources (< 10dB of peak) aft of trailing edge (note scales)
•  Exposed sources slightly higher with surface, suggests surface enhances 

mixing noise sources.

Bare nozzle, total field 

Installed, flyover observer Installed, lateral observer 
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Discussion

•  Phased array invaluable in determining if planform approximations are 
acoustically valid. 

•  PIV near surfaces will be critical in confirming that test articles are 
aerodynamically valid.

•  Impact of surface on screeching jet very tricky, perhaps not surprising given 
that flow is dominated by resonance. 

•  Installed subsonic jets do not appear to need much upstream planform. 
Seems better to foreshorten surface and improve aerodynamics at nozzle. 
Use biplane if required.

•  Finite span surfaces/ azimuthal angle variations show that line-of-sight 
blockage of sound source distributions explains majority of shielding 
observations. 
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Summary

•  Aeroacoustic testing of installed exhaust is a new challenge.
–  Critical, given role of shielding in low-noise concept vehicles.
–  Working on what test model approximations are valid, what are incorrect.

•  Biplane concept developed to extend surface upstream with minimal rig 
interference and flow impact. May not be critical for subsonic flows.

•  Jet-Surface Interaction acoustic database extended to subsonic dual-stream 
nozzles with external plugs, on surfaces with finite span.

•  Phased array confirmed planform coverage was adequate.
•  Source distributions of dual-stream plumes different than single-stream.
•  Planforms simulating conceptual aircraft were tested, will be used to confirm 

application of simple JSI models to realistic geometries.


